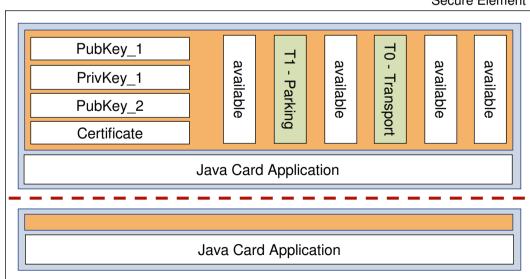


Secure communication between web browsers and NFC targets by the example of an e-ticketing concept

Peter Kleebauer University of Applied Sciences Hagenberg EC-Web `08 – September 3rd, 2008

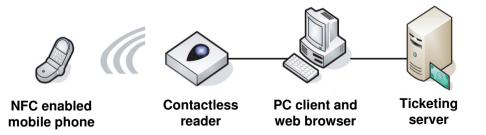
www.nfc-research.at

- NFC What is it all about ...
 - NFC can be seen as a further development of RFID
 - Radio Frequency (RF) based proximity coupling technology
 - Range: 0 10 cm (proximity Technology)
 - Integrated in mobile devices for consumer market
 - Mobile phones
 - PDAs
 - Transmissions on unsecured communication ways
 - Integrity and Authenticity must be guaranteed
 - Authorization mechanism must be implemented


NFC Device Operating Modes

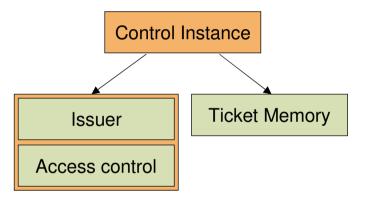
- Data exchange (P2P NFC peer-to-peer)
 - Bidirectional connection to exchange data between devices
 - P2P Payment, Contacts, vCards, ...
- Reader/Writer mode (PCD Proximity Coupling Device)
 - Mobile Device is able to read external tags/smartcards
 - SmartPoster, WiFi Config, ...
- Tag emulation (PICC Proximity Card)
 - Reader can't distinguish between smartcard & tag emulation
 - Handset could contain multiple smartcards (smartcard chips)

NFC Secure Element


- Dynamic environment where applications can be stored and administrated
 - Delimited memory for each application (sandbox)
 - No communication possible between different applications
 - Cryptographic functions to encrypt, decrypt or sign data

Goal of the Thesis: NFC Secure Communication

- Simple communication between web browser and NFC devices (e.g. mobile phones)
 - Installation without any user activity (web browser plug-in)
- Better usability (known tools)
- Secure communication protocol
 - Prevention of any data manipulation (AAA: authenticity, authorization, accounting)
 - Bilateral authentification between all communication parties
 - Timely transmission of tickets (or other data)
- Ubiquitous applications
 - Authentication on web sites
 - Payment



Security concept – Public Key Infrastructure

Participants

- Control instance Trusted Third Party (TTP)
 - Self-signed certificate
 - Confirms the validity of the ticket by its signature
 - Implemented as Web server application
- Issuer
 - Responsible for ticket generation and accounting
 - Implemented as Web Server (View HTML Content) and Web server application
- Access control
 - Controls the protocol communication with Secure Element
 - Examines the authenticity of tickets
- Ticket Memory
 - Application for managing tickets in the Secure Element
 - Performing cryptographic functions
 - Implemented as JavaCard application

Ticket

- ID_I +ID_E for event
 - Identification of the Issuer/Event
 - Split between Issuer and Event
- ID_T for ticket
 - Identification of the ticket
- Payload
 - Counter, name, period of validity
- Keyl
 - Public key of the Issuer
 - Key is used to encrypt communication during verification process (issuer content)
- KeyT
 - Public key of the ticket (identification)
 - Key is used to encrypt communication during verification process (ticket content)

	IDI (3)	IDE (5)	IDT (3)	Value (2)	Information (38 Byte)	Date (5)	Keyl (16 Byte)	KeyT (8 Byte)	
-	→ general parameters → → specific →								
-	◀	◀ 80 Byte							

Ticket request

Control Instance

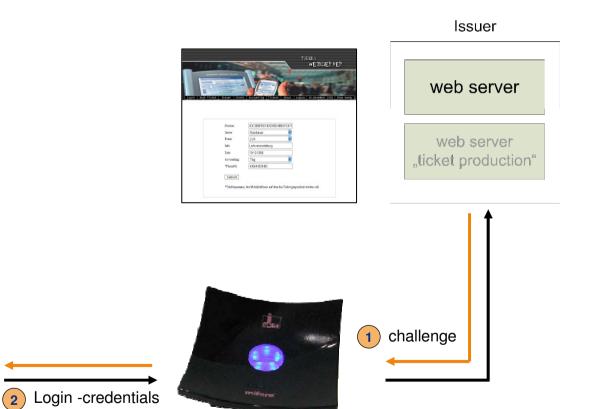
-Public Key Issuer

-Public Key Ticket Memory

-Public/Private Key Control Instance

Setup - Key Exchange

- Issuer
 - Public/Private Key Issuer
 - Public key Control Instance 🔫
 - Public/Private Key *Tickets*
- Ticket Memory
 - Public/Private Key Ticket Memory
 - Public Key Control Instance
- Access Control
 - Public/Private Key Issuer
 - Private Keys *Tickets (ticket database)*

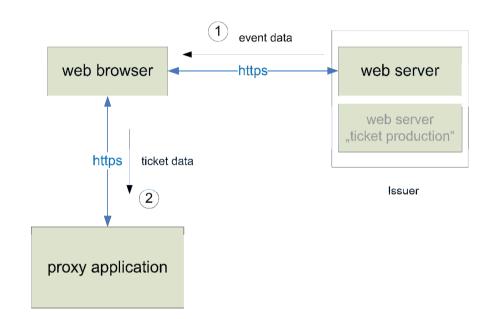

Protocol – Ticket Preparation

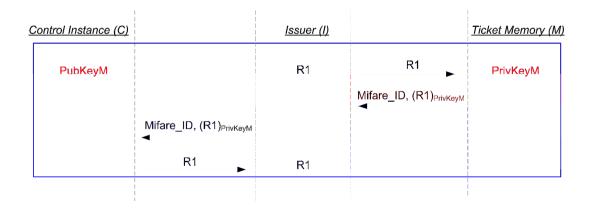
Login and ticket credentials

- Establish secure connection (1)
 - Web browser and Web server (https)

nse.

• Website login using the MifareID

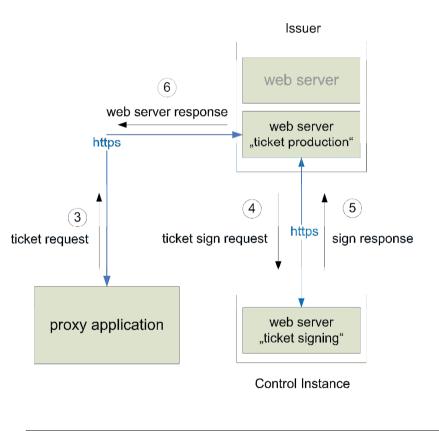

Reader and proxy application



Protocol – Ticket Preparation

Login and ticket credentials

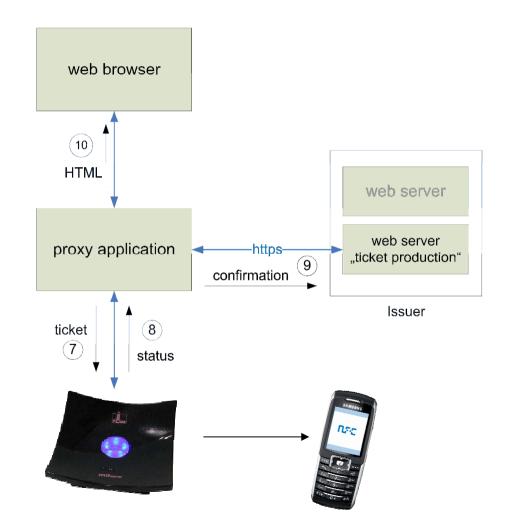
- Establish secure connection (1)
 - Web browser and Web server (https)
- Website login using the MifareID
 - Challenge Response procedure
 - Random number prevents Replay attacks
- Ticket data transferred to proxy application (2)
 - XML based structure
 - Further communication controlled by proxy application



Protocol – Ticket Preparation

Ticket preparation

- Proxy application establish new secured connection (3)
 - Transfer xml based ticket request
- Preparing ticket
 - Web server "ticket production"
- Ticket signing via Control Instance (4,5)
 - Web server "ticket signing"
 - Signed with Private Key Control Instance
 - Encrypted with Public Key Ticket Memory
- Signed and encrypted ticket (6)
 - Proxy application


Encrypted with Public Key Ticket Memory

Protocol – Ticket Preparation

Ticket transfer

- Signed and encrypted ticket is processed by
 - JavaCard application
 - Ticket decryption
 - Signature check (*Control instance*)
 - Ticket stored in Secure Element (7)
- Status information (8)
 - Issuer activates the ticket (9)
 - User confirmation (web browser) (10)

Protocol – Ticket Verification

- Bilateral authentification (authentication of the Access Control and the Ticket Memory)
- Encrypted communication
 - Issuer content encrypted with Keyl (part of the ticket)
 - Ticket content encrypted with KeyT (part of the ticket)
- Strictly scheduled protocol sequence
 - Random numbers prevent Replay attacks
- Ticket modification within the ticket itself and the Access Control ticket database
- Collection of protocol errors
 - Protocol aborts produces defined status

Protocol – Ticket Verification

Issuer content

- Valid event IDs are enumerated (1,2)
- Access Control choose event ID (3)
 - Access Control is authenticated (R2)

Ticket content

- Ticket Memory sends ticket data (4)
 - Ticket Memory is authenticated
- Access Control modificates the ticket (5)
 - Ticket is stored in the Secure Element
- Ticket Memory sends the modificated ticket (6)

Access

Summarize Security issues

- The *Ticket Memory* is implemented as JavaCard Applet in the Secure Element
 - At no point a 3rd party can access information in the Secure Element without holding the correct key
 - Authorized instances are not able to read other ticket information than their own
- Without a bilateral authentication, neither the smartcard nor the server application will allow a transaction
 - Server credentials in the JRE Certification Store
 - Client credentials in the Secure Element
- No User interaction required at Gate or when ticket is received
 - Good usability to the end users beside ensuring high security
- Issuer immediately knows whether the ticket arrived safely or not

Happy to answer any questions

Peter Kleebauer University of Applied Sciences Hagenberg peter.kleebauer@fh-hagenberg.at

www.nfc-research.at