Automatic Impedance Matching for 13.56 MHz NFC Antennas

Michael Roland¹, Harald Witschnig², Erich Merlin², Christian Saminger¹

¹Upper Austria University of Applied Sciences, Hagenberg, Austria ²NXP Semiconductors, Gratkorn, Austria

6th Symposium on Communication Systems, Networks and Digital Signal Processing, 2008

- Overview of the NFC Research Lab
- Motivation
 - NFC Equipment and its Antennas
 - Impedance Matching
- Automatic Impedance Matching
 - Automatic Tuning System
 - Measuring Circuit
 - Matching Circuit
 - Controller
 - Results
- Summary and Outlook

NFC Research Lab

- Part of the R&D department of the Upper Austria University of Applied Sciences
- Funded by the BMVIT (Federal Ministry for Transport, Innovation and Technology) and FFG (Austrian Research Promotion Agency)
- We are focusing on
 - NFC hardware development
 - interoperability and performance testing for NFC systems
 - implementation of NFC applications
 - secure aspects for NFC systems and applications
- 1st Austrian NFC Trial
- Annual NFC Congress in Hagenberg

- Overview of the NFC Research Lab
- Motivation
 - NFC Equipment and its Antennas
 - Impedance Matching
- Automatic Impedance Matching
 - Automatic Tuning System
 - Measuring Circuit
 - Matching Circuit
 - Controller
 - Results
- Summary and Outlook

NFC Equipment and its Antennas

- NFC transmission module IC has external antenna
- Mobile devices have though space-saving requirements
- Non-standard antennas necessary to fit casings
 - antennas have varying characteristics (shape, impedance)
 - each antenna has a certain impedance measured at its clamps

- Overview of the NFC Research Lab
- Motivation
 - NFC Equipment and its Antennas
 - Impedance Matching
- Automatic Impedance Matching
 - Automatic Tuning System
 - Measuring Circuit
 - Matching Circuit
 - Controller
 - Results
- Summary and Outlook

What is Impedance Matching?

- Antenna's impedance is the NFC IC's load resistance
- 2 parameters depend on the NFC IC's load resistance
 - · the transmitter supply current and
 - the emitted RF power
- Both parameters decrease with increasing load resistance

Good trade-off between both parameters around 40 to 50 ohms

NFC Antenna Topology

- NFC antenna topology with EMC filter, matching circuit, quality factor damping resistors and antenna coil
- C₁ and C₂ are adjusted until the whole topology circuit matches
 50 ohms at its clamps (TX1, TX2)

Disadvantages of Manual Impedance Matching

- Expensive equipment (network analyzer, impedance analyzer)
- Time-consuming procedure
- Good sense of choosing the right capacitor values necessary

- Overview of the NFC Research Lab
- Motivation
 - NFC Equipment and its Antennas
 - Impedance Matching
- Automatic Impedance Matching
 - Automatic Tuning System
 - Measuring Circuit
 - Matching Circuit
 - Controller
 - Results
- Summary and Outlook

Requirements

- Most NFC devices are mobile handsets
- Automatic tuning system must be small in shape and size
- Single chip solution preferred
- ⇒ ideal solution has only integrable parts

System Design

 Automatic tuning system design split into its three components: measuring circuit, matching circuit and controller component.

waveform

- Overview of the NFC Research Lab
- Motivation
 - NFC Equipment and its Antennas
 - Impedance Matching
- Automatic Impedance Matching
 - Automatic Tuning System
 - Measuring Circuit
 - Matching Circuit
 - Controller
 - Results
- Summary and Outlook

Measuring Bridge

- Wheatstone bridge with 13.56 MHz sinusoidal supply
- Bridge is balanced ($V_{diff} = I_2 \cdot R_2 I_Z \cdot Z = 0 \text{ V}$)

⇒ Tuning circuit is matched to 50 ohms (at the operating frequency)

Balancing the Amplitude of V_{diff}

Measuring rectifiers are used to rectify

$$V_{SINE1} = I_2 \cdot R_2$$
 and $V_{SINE2} = I_7 \cdot Z$

- Resulting signals are low pass filtered
- V_{diff} is calculated in software after analog-digital conversion

Balancing the Phase of V_{diff}

- V_{SINE1} and V_{SINE2} shaped into rectangular signals
- Phase detector: phase-offset is converted into a pulse-width modulated signal
- PWM signal is low pass filtered and fed into an analog-digital converter

Verification of the Measuring Circuit

- Verified with a manually tunable antenna circuit
- The antenna is connected to the measuring circuit and tuned
- Tuning is verified with a network analyzer
- Result is approximately the same with several tested antennas:

- Overview of the NFC Research Lab
- Motivation
 - NFC Equipment and its Antennas
 - Impedance Matching
- Automatic Impedance Matching
 - Automatic Tuning System
 - Measuring Circuit
 - Matching Circuit
 - Controller
 - Results
- Summary and Outlook

Matching Circuit

- C₁ and C₂ in the antenna topology are replaced with capacitance arrays
- Capacitance array: network of parallel switched capacitors
- Capacitors switched with low-capacitance DMOS switches

- Overview of the NFC Research Lab
- - NFC Equipment and its Antennas
 - Impedance Matching
- Automatic Impedance Matching
 - Automatic Tuning System
 - Measuring Circuit
 - Matching Circuit
 - Controller
- Summary and Outlook

Controller

- Analyses the measurands by reading the values from analog-digital converter
- Controls the capacitance arrays
- Tuning algorithm to minimizes amplitude and phase of V_{diff} by optimal adjustment of C₁ and C₂

- Overview of the NFC Research Lab
- Motivation
 - NFC Equipment and its Antennas
 - Impedance Matching
- Automatic Impedance Matching
 - Automatic Tuning System
 - Measuring Circuit
 - Matching Circuit
 - Controller
 - Results
- Summary and Outlook

Automatic Tuning Results

Summary and Outlook

- Automatic impedance matching significantly simplifies the integration of NFC ICs into applications.
- This automatic tuning system successfully finds the optimum values for the antenna circuit's tuning capacitors.
- Only integrable components are used.
- Outlook
 - Parasitic effects of the DMOS switches need to be investigated.
 - The tuning algorithm may be optimized.
 - The whole system should be integrated into a single IC.

