Management of Multiple Secure Elements in NFC-Devices

Gerald Madlmayr
NFC Research Lab, Hagenberg
Cardis 2008, Royal Holloway University of London
NFC – Near Field Communication

- RF-Domain: 13,56 Mhz
- Integrated in mobile devices for consumer market
- Operating Modes
 - Tag/SmartCard Emulation (PICC)
 - Reader/Writer (PCD)
 - Peer (NFC)
- Range: ~ 4 cm (proximity Technology)
- Simplicity: Touch & Go
- Goal: Interoperability (Felica/ISO14443-A/B in one Device)
NFC Device Operating Modes

- **Data exchange (P2P – NFC peer-to-peer)**
 - Bidirectional connection to exchange data between devices (ISO18092)
 - WiFi, BT, P2P Payment, Contacts, vCards, …

- **Reader/Writer mode (PCD – Proximity Coupling Device)**
 - Mobile Device is able to read external tags/smartcards (ISO14443)
 - SmartPoster, WiFi Config, Ring-Tones, …

- **Tag emulation (PICC – Proximity Card)**
 - Reader can’t distinguish between smartcard & tag emulation
 - Handset could contain multiple smartcards (smartcard chips)
Smartcard Emulation (eg. JavaCard)

- Smartcard Application is “only” software
- Upload Smartcard Applications over the air (remote)
 - Less “physical” Smartcards issued
 - Handset offers Display, Keyboard, Network to Smartcard
 - Handset substituted multiply smartcards:

 Security Domain

 ((U)SIM Applet
 Certificates for Smartposter
 Roaming Tables

 Firewall

 Prepaid Card Applet
 Credit Card Applet

 Firewall

 Tickets
 Loyalty Points
 Identification

 Security Domain

 OTA Link

 Card OS & GlobalPlatform
OTA-Manager for Secure Element

NFC Device/Handset

- Host Controller Interface (JSR 257) (2)
- ISO7816 Interface (JSR 177) (1)

- NFC Controller
- SWP, S2C, etc. (3)
- Secure Element(s)
- Contactless Frontend (CLF) (4)

- Antenna

- Baseband communication (SMS, data, …)

- Platform Manager for Secure Elements
 - Mobile Network Infrastructure
 - RF Reader
 - RF Tag

- Host Controller

- SWP, S2C, etc. (3)
Secure Element Implementations

<table>
<thead>
<tr>
<th>Software/Application Processor</th>
<th>Integrated (fixed) Secure Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Not tamper proofed data container</td>
<td>- tamper proofed data container</td>
</tr>
<tr>
<td>- Low implementation Costs</td>
<td>- Extra Hardware costs</td>
</tr>
<tr>
<td>- Dependence on OS of Handset</td>
<td>- Independence on OS of Handset</td>
</tr>
<tr>
<td>- Implementation up to Service Provider</td>
<td>- Integration up to Handset Manufacturer</td>
</tr>
<tr>
<td>- Problem when Handset is changed</td>
<td>- Problem when Handset is changed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Removable Secure Element</th>
<th>USIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>- tamper proofed data container</td>
<td>- tamper proofed data container</td>
</tr>
<tr>
<td>- Extra Hardware costs (Card Slot)</td>
<td>- No Extra Hardware costs</td>
</tr>
<tr>
<td>- Independence on OS of Handset</td>
<td>- Independence on OS of Handset</td>
</tr>
<tr>
<td>- Integration up to Issuer (phone needs Slot)</td>
<td>- Completely under control of MNO</td>
</tr>
<tr>
<td>- No Problem when Handset is changed</td>
<td>- No Problem when Handset is changed</td>
</tr>
</tbody>
</table>
Multiple Secure Elements - 2 Problems

(1) What does an external reader “see”?
- P2P random ID
- One ID/Secure element

(2) How to manage removable secure elements?
- OTA Management vital for Ecosystem (manager!)
- What if secure element is put in a different device?
(1) What does an external reader “see”?

- Some Readers/PayPass (= CLess Creditcard) Readers do only support one Smartcard/UID in the field
 - no anti-collision implemented

- Solutions
 - Explicit Select (UICC, SecureSD, P2P …)
 - No Touch and go any more
 - Which application is on which SE?
 - Time Multiplex
 - After one SE is in ‘HALT’, present new UID
 - Aggregation and Representation by one UID
Aggregation and Representation by one UID

- Secure Element Controller (SEC) routes Data from Reader to Secure Element (SE)
 - On insert/Boot of Device, SE signs up at SEC
 - Routing according to modulation scheme (A/B/Felcia/P2P)
 - SEC keeps table of AIDs (JavaCard)
 - Minor Problem: Proprietary Cards
 - Mifare/MAD-IDs/Crypto-1
 - 1 K Classic stores 16 MAIDs (= 2 Blocks/1Sector)
 - SEC could keep “big” MAD => more Blocks
 - Felicia, other than Mode 0 (encryption)
(2) How to manage removable secure elements?

- Trusted Service Manager (TSM) associates MSISDN with the Secure element to manage.
 - What if secure element is put into a new device?
 - What if secure element was stolen and put into a new device?

- Secure Element should be able to tell the TSM if device was changed
 - Activation of SE after boot of device/on insert
 - Applets can check if SE is not activated
 - Dedicated “Activation-Applet” in the Issuer Security Domain
Activation of UICC

- SEC selects Activation Applet
- Asymmetric Challenge Response
- UICC can verify Certificate of SEC by OTA/BIP connection (with TSM/MNO)
- SEC advises the UICC to establish secure connection to Issuer to check certificate of UICC
- Flag in Activation Applet of UICC is set
- UICC and SEC store Certificate of each other to avoid data connections in the future
Activation of SD-Card

- SEC and UICC trust each other
- SEC selects Activation Applet of SD-Card
- Asymmetric Challenge Response
- SD Card request pipe to UICC
- Asymmetric Challenge Response
- UICC verifies Certificate of SD-Card
- SD-Card advises the UICC to establish secure connection to Issuer to check certificate of UICC/SEC.
- SD-Card verifies Certificates of UICC/SEC
- SEC verifies Certificate of SD-Card (ask UICC)
- SEC activates SD-Card
Conclusion

- When integration multiple Secure Elements into one device, backwards compatibility is not granted
 - Aggregation of SEs and only presenting one UID to the reader is a feasible solution
 - Does not require any changes to the reader infrastructure
 - Secure Element Controller (SEC) routes data streams

- Management of removable Secure Elements must be assured
 - Secure Elements need be activated before being used
 - Secure Element Controller (SEC) handles communication
Next Step: Implementation

- Use NFC Chip PN544 (first Engineer Samples available since 08/2008)
- Chip features already HCI (Host Controller Interface) and allows communication between SEs based on pipes
- Integration into NFCBox (includes NFC Chip + AVR for Program Logic)
- Use of Single Wire Protocol SIM Card & SD-Card in NFCBox
- 2nd Step: Integration into Mobile Device (Free Runner/OpenMoko)
1st International IEEE Workshop on Contactless Security (CLessec)
http://www.nfc-research.at/clessec

in Fukuoka, Japan

Happy to answer any questions

Gerald.madlmayr@fh-hagenberg.at
http://www.nfc-research.at