

Management of Multiple Secure Elements in NFC-Devices

Gerald Madlmayr

NFC Research Lab, Hagenberg

Cardis 2008, Royal Holloway University of London

NFC – Near Field Communication

- RF-Domain: 13,56 Mhz
- Integrated in mobile devices for consumer market
- Operating Modes
 - Tag/SmartCard Emulation (PICC)
 - Reader/Writer (PCD)
 - Peer (NFC)
- Range: ~ 4 cm (proximity Technology)
 - Simplicity: Touch & Go
- Goal: Interoperability (Felica/ISO14443-A/B in one Device)

NFC Device Operating Modes

- Data exchange (P2P NFC peer-to-peer)
 - Bidirectional connection to exchange data between devices (ISO18092)
 - WiFi, BT, P2P Payment, Contacts, vCards, ...
- Reader/Writer mode (PCD Proximity Coupling Device)
 - Mobile Device is able to read external tags/smartcards (ISO14443)
 - SmartPoster, WiFi Config, Ring-Tones, ...
 - Tag emulation (PICC Proximity Card)
 - Reader can't distinguish between smartcard & tag emulation
 - Handset could contain multiple smartcards (smartcard chips)

Smartcard Emulation (eg. JavaCard)

- Smartcard Application is "only" software
- Upload Smartcard Applications over the air (remote)
 - Less "physical" Smartcards issued
 - Handset offers Display, Keyboard, Network to Smartcard
 - Handset substituted multiply smartcards:

OTA-Manager for Secure Element

Secure Element Implementations

Software/Application Processor	Integrated (fixed) Secure Element
 Not tamper proofed data container Low implementation Costs Dependence on OS of Handset Implementation up to Service Provider Problem when Handset is changed 	 tamper proofed data container Extra Hardware costs Independence on OS of Handset Integration up to Handset Manufacturer Problem when Handset is changed
Removable Secure Element	USIM
 tamper proofed data container Extra Hardware costs (Card Slot) Independence on OS of Handset Integration up to Issuer (phone needs Slot) No Problem when Handset is changed 	 tamper proofed data container No Extra Hardware costs Independence on OS of Handset Completely under control of MNO

Multiple Secure Elements - 2 Problems

- (1) What does an external reader "see"?
 - P2P random ID
 - One ID/Secure element
- (2) How to manage remove able secure elements?
 - OTA Management vital for Ecosystem (manager!)
 - What if secure element is put in a different device?

(1) What does an external reader "see"?

- Some Readers/PayPass (= CLess Creditcard) Readers do only support one Smartcard/UID in the field
 - no anti-collision implemented
 - Solutions
 - Explicit Select (UICC, SecureSD, P2P ...)
 - No Touch and go any more
 - Which application is on which SE?
 - Time Multiplex
 - After one SE is in 'HALT', present new UID
 - Aggregation and Representation by one UID

Aggregation and Representation by one UID

- Secure Element Controller (SEC) routes Data from Reader to Secure Element (SE)
 - On insert/Boot of Device, SE signs up at SEC
 - Routing according to modulation scheme (A/B/Felcia/P2P)
 - SEC keeps table of AIDs (JavaCard)
 - Minor Problem: Proprietary Cards
 - Mifare/MAD-IDs/Crypto-1
 - 1 K Classic stores 16 MAIDs (= 2 Blocks/1Sector)
 - SEC could keep "big" MAD => more Blocks
 - Felcia, other than Mode 0 (encryption)

(2) How to manage remove able secure elements?

- Trusted Service Manager (TSM) associates MSISDN with the Secure element to manage.
 - What if secure element is put into new device?
 - What if secure element was stolen and put into a new device?
- Secure Element should be able to tell the TSM if device was changed
 - Activation of SE after boot of device/on insert
 - Applets can check if SE is not activated
 - Dedicated "Activation-Applet" in the Issuer Security Domain

Activation of UICC

- SEC selects Activation Applet
- Asymmetric Challenge Response
- UICC can verify Certificate of SEC by OTA/BIP connection (with TSM/MNO)
- SEC advises the UICC to establish secure connection to Issuer to check certificate of UICC
- Flag in Activation Applet of UICC is set
- UICC and SEC store Certificate of each other to avoid data connections in the future

Activation of SD-Card

- SEC and UICC trust each other
- SEC selects Activation Applet of SD-Card
- Asymmetric Challenge Response
- SD Card request pipe to UICC
- Asymmetric Challenge Response
- UICC verifies Certificate of SD-Card
- SD-Card advises the UICC to establish secure connection to Issuer to check certificate of UICC/SEC.
- SD-Card verifies Certificates of UICC/SEC
- SEC verifies Certificate of SD-Card (ask UICC)
- SEC activates SD-Card

Conclusion

- When integration multiple Secure Elements into one device, backwards compatibility is not granted
 - Aggregation of SEs and only presenting one UID to the reader is a feasible solution
 - Does not require any changes to the reader infrastructure
 - Secure Element Controller (SEC) routes data streams
- Management of removable Secure Elements must be assured
 - Secure Elements need be activated before being used
 - Secure Element Controller (SEC) handles communication

Next Step: Implementation

- Use NFC Chip PN544 (first Engineer Samples available since 08/2008)
- Chip features already HCI (Host Controller Interface) and allows communication between SEs based on pipes
- Integration into NFCBox (includes NFC Chip + AVR for Program Logic)
- Use of Single Wire Protocol SIM Card & SD-Card in NFCBox
- 2nd Step: Integration into Mobile Device (Free Runner/OpenMoko)

1st International IEEE Workshop on Contactless Security (CLessec) http://www.nfc-research.at/clessec

in Fukuoka, Japan

Happy to answer any questions

Gerald.madlmayr@fh-hagenberg.at

http://www.nfc-research.at

www.nfc-research.at